Multi-HDP: A Non Parametric Bayesian Model for Tensor Factorization
نویسندگان
چکیده
Matrix factorization algorithms are frequently used in the machine learning community to find low dimensional representations of data. We introduce a novel generative Bayesian probabilistic model for unsupervised matrix and tensor factorization. The model consists of several interacting LDA models, one for each modality. We describe an efficient collapsed Gibbs sampler for inference. We also derive the nonparametric form of the model where interacting LDA models are replaced with interacting HDP models. Experiments demonstrate that the model is useful for prediction of missing data with two or more modalities as well as learning the latent structure in the data.
منابع مشابه
Nested Hierarchical Dirichlet Processes for Multi-Level Non-Parametric Admixture Modeling
Dirichlet Process(DP) is a Bayesian non-parametric prior for infinite mixture modeling, where the number of mixture components grows with the number of data items. The Hierarchical Dirichlet Process (HDP), often used for non-parametric topic modeling, is an extension of DP for grouped data, where each group is a mixture over shared mixture densities. The Nested Dirichlet Process (nDP), on the o...
متن کاملBayesian nonparametric hidden semi-Markov models
There is much interest in the Hierarchical Dirichlet Process Hidden Markov Model (HDPHMM) as a natural Bayesian nonparametric extension of the ubiquitous Hidden Markov Model for learning from sequential and time-series data. However, in many settings the HDP-HMM’s strict Markovian constraints are undesirable, particularly if we wish to learn or encode non-geometric state durations. We can exten...
متن کاملBayesian Multi-view Tensor Factorization
We introduce a Bayesian extension of the tensor factorization problem to multiple coupled tensors. For a single tensor it reduces to standard PARAFAC-type Bayesian factorization, and for two tensors it is the first Bayesian Tensor Canonical Correlation Analysis method. It can also be seen to solve a tensorial extension of the recent Group Factor Analysis problem. The method decomposes the set o...
متن کاملBayesian Nonparametric Learning with semi-Markovian Dynamics
There is much interest in the Hierarchical Dirichlet Process Hidden Markov Model (HDP-HMM) as a natural Bayesian nonparametric extension of the ubiquitous Hidden Markov Model for learning from sequential and time-series data. However, in many settings the HDP-HMM’s strict Markovian constraints are undesirable, particularly if we wish to learn or encode non-geometric state durations. We can exte...
متن کاملA Layered Dirichlet Process for Hierarchical Segmentation of Sequential Grouped Data
We address the problem of hierarchical segmentation of sequential grouped data, such as a collection of textual documents, and propose a non-parametric Bayesian approach for this problem. Existing Bayesian non-parametric models such as the sticky HDP-HMM are suitable only for single-layer segmentation. We propose the Layered Dirichlet Process (LaDP), where each layer has a countable set of Diri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008